Thèse présentée pour obtenir le grade de DOCTEUR DE L’ÉCOLE POLYTECHNIQUE

نویسنده

  • Xavier Allamigeon
چکیده

In this thesis, we define a static analysis by abstract interpretation of memory manipulations. It is based on a new numerical abstract domain, which is able to infer program invariants involving the operators min and max. This domain relies on tropical polyhedra, which are the analogues of convex polyhedra in tropical algebra. Tropical algebra refers to the set R∪{−∞} endowed with max as addition and + as multiplication. This abstract domain is provided with sound abstract primitives, which allow to automatically compute over-approximations of semantics of programs by means of tropical polyhedra. Thanks to them, we develop and implement a sound static analysis inferring minand maxinvariants over the program variables, the length of the strings, and the size of the arrays in memory. In order to improve the scalability of the abstract domain, we also study the algorithmics of tropical polyhedra. In particular, a tropical polyhedron can be represented in two different ways, either internally, in terms of extreme points and rays, or externally, in terms of tropically affine inequalities. Passing from the external description of a polyhedron to its internal description, or inversely, is a fundamental computational issue, comparable to the well-known vertex/facet enumeration or convex hull problems in the classical algebra. It is also a crucial operation in our numerical abstract domain. For this reason, we develop two original algorithms allowing to pass from an external description of tropical polyhedra to an internal description, and vice versa. They are based on a tropical analogue of the double description method introduced by Motzkin et al.. We show that they outperform the other existing methods, both in theory and in practice. The cornerstone of these algorithms is a new combinatorial characterization of extreme elements in tropical polyhedra defined by means of inequalities: we have proved that the extremality of an element amounts to the existence of a strongly connected component reachable from any node in a directed hypergraph. We also show that the latter property can be checked in almost linear time in the size of the hypergraph. Moreover, in order to have a better understanding of the intrinsic complexity of tropical polyhedra, we study the problem of determining the maximal number of extreme points in a tropical polyhedron. In the classical case, this problem is addressed by McMullen upper bound theorem. We prove that the maximal number of extreme points in the tropical case is bounded by a similar result. We introduce a class of tropical polyhedra appearing as natural candidates to be maximizing instances. We establish lower and upper bounds on their number of extreme points, and show that the McMullen type bound is asymptotically tight when the dimension tends to infinity and the number of inequalities defining the polyhedra is fixed. Finally, we experiment our tropical polyhedra based static analyzer on programs manipulating strings and arrays. These experimentations show that the analyzer successfully determines precise properties on memory manipulations, and that it scales up to highly disjunctive invariants which could not be computed by the existing methods. The implementation of all the algorithms and abstract domains on tropical polyhedra developed in this work is available in the Tropical Polyhedra Library TPLib [All09].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Visualization Models applied to the Analysis of Parallel Applications. (Quelques Modèles de Visualisation pour l'Analyse des Applications Parallèles)

THÈSE EN COTUTELLE INTERNATIONALE pour obtenir le grade de DOCTEUR DE L’Institut polytechnique de Grenoble Spécialité : Informatique et de l’Université Federale du Rio Grande do Sul préparée au Laboratoire d’Informatique de Grenoble dans le cadre de l’École Doctorale Mathématiques, Sciences et Technologies de l’Information, Informatique et au Laboratoire de Parallelisme et Distribution dans le ...

متن کامل

Thèse Présentée pour obtenir le grade de Docteur du Télécom ParisTech

................................................................................................................................................. 3 ACKNOWLEDGEMENT ........................................................................................................................... 5 TABLE OF CONTENTS ............................................................................................

متن کامل

Animation multirésolution d'objets déformables en temps-réel. Application à la simulation chirurgicale. (Real-time multiresolution animation of deformable objects Application to surgery simulation)

Thèse pour obtenir le grade de Docteur de l'INPG Spécialité : Imagerie, Vision et Robotique Préparée au sein du laboratoire iMAGIS-GRAVIR/IMAG-INRIA. UMR CNRS C5527 dans le cadre de l'École Doctorale Mathématiques, Sciences et Technologie de l'information, Informatique présentée et soutenue publiquement par Gilles DEBUNNE le 15 décembre 2000.

متن کامل

ÉCOLE DOCTORALE DE MATHÉMATIQUES ET D ’ INFORMATIQUE THÈSE Pour obtenir le grade de DOCTEUR DE L ' UNIVERSITÉ BORDEAUX 1

........................................................................................................................................iii Résumé ..........................................................................................................................................iv Table of

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010